Toolsets

Learn about toolset types, execution models, validation, retry hints, and tool catalogs in Goa-AI.

Toolsets are collections of tools that agents can use. Goa-AI supports several toolset types, each with different execution models and use cases.

Toolset Types

Service-Owned Toolsets (Method-Backed)

Declared via Toolset("name", func() { ... }); tools may BindTo Goa service methods or be implemented by custom executors.

  • Codegen emits per-toolset specs/types/codecs under gen/<service>/tools/<toolset>/
  • Agents that Use these toolsets import the provider specs and get typed call builders and executor factories
  • Applications register executors that decode typed args (via runtime-provided codecs), optionally use transforms, call service clients, and return ToolResult

Agent-Implemented Toolsets (Agent-as-Tool)

Defined in an agent Export block, and optionally Used by other agents.

  • Ownership still lives with the service; the agent is the implementation
  • Codegen emits provider-side agenttools/<toolset> helpers with NewRegistration and typed call builders
  • Consumer-side helpers in agents that Use the exported toolset delegate to provider helpers while keeping routing metadata centralized
  • Execution happens inline; payloads are passed as canonical JSON and decoded only at the boundary if needed for prompts

MCP Toolsets

Declared via MCPToolset(service, suite) and referenced via Use(MCPToolset(...)).

  • Generated registration sets DecodeInExecutor=true so raw JSON is passed through to the MCP executor
  • MCP executor decodes using its own codecs
  • Generated wrappers handle JSON schemas/encoders and transports (HTTP/SSE/stdio) with retries and tracing

When to Use BindTo vs Inline Implementations

Use BindTo when:

  • The tool should call an existing Goa service method
  • You want generated transforms between tool and method types
  • The service method already has the business logic you need
  • You want to reuse validation and error handling from the service layer
// Tool bound to existing service method
Tool("search", "Search documents", func() {
    Args(SearchPayload)
    Return(SearchResult)
    BindTo("Search")  // Calls the Search method on the same service
})

Use inline implementations when:

  • The tool has custom logic not tied to a service method
  • You need to orchestrate multiple service calls
  • The tool is purely computational (no external calls)
  • You want full control over the execution flow
// Tool with custom executor implementation
Tool("summarize", "Summarize multiple documents", func() {
    Args(func() {
        Attribute("doc_ids", ArrayOf(String), "Document IDs to summarize")
        Required("doc_ids")
    })
    Return(func() {
        Attribute("summary", String, "Combined summary")
        Required("summary")
    })
    // No BindTo - implement in executor
})

For inline implementations, you write the executor logic directly:

func (e *Executor) Execute(ctx context.Context, meta *runtime.ToolCallMeta, call *planner.ToolRequest) (*planner.ToolResult, error) {
    switch call.Name {
    case specs.Summarize:
        args, _ := specs.UnmarshalSummarizePayload(call.Payload)
        // Custom logic: fetch multiple docs, combine, summarize
        summary := e.summarizeDocuments(ctx, args.DocIDs)
        return &planner.ToolResult{
            Name:   call.Name,
            Result: &specs.SummarizeResult{Summary: summary},
        }, nil
    }
    return nil, fmt.Errorf("unknown tool: %s", call.Name)
}

Bounded Tool Results

Some tools naturally return large lists, graphs, or time-series windows. You can mark these as bounded views so that services remain responsible for trimming while the runtime enforces and surfaces the contract.

The agent.Bounds Contract

The agent.Bounds type is a small, provider-agnostic contract that describes how a tool result has been bounded relative to the full underlying data set:

type Bounds struct {
    Returned       int    // Number of items in the bounded view
    Total          *int   // Best-effort total before truncation (optional)
    Truncated      bool   // Whether any caps were applied (length, window, depth)
    RefinementHint string // Guidance on how to narrow the query when truncated
}
FieldDescription
ReturnedCount of items actually present in the result
TotalBest-effort count of total items before truncation (nil if unknown)
TruncatedTrue if any caps were applied (pagination, depth limits, size limits)
RefinementHintHuman-readable guidance for narrowing the query (e.g., “Add a date filter to reduce results”)

Service Responsibility for Trimming

The runtime does not compute subsets or truncation itself—services are responsible for:

  1. Applying truncation logic: Pagination, result limits, depth caps, time windows
  2. Populating bounds metadata: Setting Returned, Total, Truncated accurately
  3. Providing refinement hints: Guiding users/models on how to narrow queries when results are truncated

This design keeps truncation logic where domain knowledge lives (in services) while providing a uniform contract for the runtime, planners, and UIs to consume.

Declaring Bounded Tools

Use the DSL helper BoundedResult() inside a Tool definition:

Tool("list_devices", "List devices with pagination", func() {
    Args(func() {
        Attribute("site_id", String, "Site identifier")
        Attribute("status", String, "Filter by status", func() {
            Enum("online", "offline", "unknown")
        })
        Attribute("limit", Int, "Maximum results", func() {
            Default(50)
            Maximum(500)
        })
        Required("site_id")
    })
    Return(func() {
        Attribute("devices", ArrayOf(Device), "Matching devices")
        Attribute("returned", Int, "Count of returned devices")
        Attribute("total", Int, "Total matching devices")
        Attribute("truncated", Boolean, "Results were capped")
        Attribute("refinement_hint", String, "How to narrow results")
        Required("devices", "returned")
    })
    BoundedResult()
    BindTo("DeviceService", "ListDevices")
})

Code Generation

When a tool is marked with BoundedResult():

  • The generated tool spec includes BoundedResult: true
  • The generated result alias type includes a Bounds *agent.Bounds field
  • Generated result types implement the agent.BoundedResult interface:
// Generated interface implementation
type ListDevicesResult struct {
    Devices        []*Device
    Returned       int
    Total          *int
    Truncated      bool
    RefinementHint string
}

func (r *ListDevicesResult) ResultBounds() *agent.Bounds {
    return &agent.Bounds{
        Returned:       r.Returned,
        Total:          r.Total,
        Truncated:      r.Truncated,
        RefinementHint: r.RefinementHint,
    }
}

Implementing Bounded Tools

Services implement truncation and populate bounds metadata:

func (s *DeviceService) ListDevices(ctx context.Context, p *ListDevicesPayload) (*ListDevicesResult, error) {
    // Query with limit + 1 to detect truncation
    devices, err := s.repo.QueryDevices(ctx, p.SiteID, p.Status, p.Limit+1)
    if err != nil {
        return nil, err
    }
    
    // Determine if results were truncated
    truncated := len(devices) > p.Limit
    if truncated {
        devices = devices[:p.Limit] // Trim to requested limit
    }
    
    // Get total count (optional, may be expensive)
    total, _ := s.repo.CountDevices(ctx, p.SiteID, p.Status)
    
    // Build refinement hint when truncated
    var hint string
    if truncated {
        hint = "Add a status filter or reduce the site scope to see fewer results"
    }
    
    return &ListDevicesResult{
        Devices:        devices,
        Returned:       len(devices),
        Total:          &total,
        Truncated:      truncated,
        RefinementHint: hint,
    }, nil
}

Runtime Behavior

When a bounded tool executes:

  1. The runtime decodes the result and checks for agent.BoundedResult implementation
  2. If the result implements the interface, ResultBounds() extracts bounds metadata
  3. Bounds are attached to planner.ToolResult.Bounds
  4. Stream subscribers and finalizers can access bounds for UI display, logging, or policy decisions
// In a stream subscriber
func handleToolEnd(event *stream.ToolEndEvent) {
    if event.Bounds != nil && event.Bounds.Truncated {
        log.Printf("Tool %s returned %d of %d results (truncated)",
            event.ToolName, event.Bounds.Returned, *event.Bounds.Total)
        if event.Bounds.RefinementHint != "" {
            log.Printf("Hint: %s", event.Bounds.RefinementHint)
        }
    }
}

When to Use BoundedResult

Use BoundedResult() for tools that:

  • Return paginated lists (devices, users, records, logs)
  • Query large datasets with result limits
  • Apply depth or size caps to nested structures (graphs, trees)
  • Return time-windowed data (metrics, events)

The bounded contract helps:

  • Models understand that results may be incomplete and can request refinement
  • UIs display truncation indicators and pagination controls
  • Policies enforce size limits and detect runaway queries

Injected Fields

The Inject DSL function marks specific payload fields as “injected”—server-side infrastructure values that are hidden from the LLM but required by the service method. This is useful for session IDs, user context, authentication tokens, and other runtime-provided values.

How Inject Works

When you mark a field with Inject:

  1. Hidden from LLM: The field is excluded from the JSON schema sent to the model provider
  2. Generated setter: Codegen emits a setter method on the payload struct
  3. Runtime population: You populate the field via a ToolInterceptor before execution

DSL Declaration

Tool("get_user_data", "Get data for current user", func() {
    Args(func() {
        Attribute("session_id", String, "Current session ID")
        Attribute("query", String, "Data query")
        Required("session_id", "query")
    })
    Return(func() {
        Attribute("data", ArrayOf(String), "Query results")
        Required("data")
    })
    BindTo("UserService", "GetData")
    Inject("session_id")  // Hidden from LLM, populated at runtime
})

Generated Code

Codegen produces a setter method for each injected field:

// Generated payload struct
type GetUserDataPayload struct {
    SessionID string `json:"session_id"`
    Query     string `json:"query"`
}

// Generated setter for injected field
func (p *GetUserDataPayload) SetSessionID(v string) {
    p.SessionID = v
}

Runtime Population via ToolInterceptor

Use a ToolInterceptor to populate injected fields before tool execution:

type SessionInterceptor struct{}

func (i *SessionInterceptor) InterceptToolCall(ctx context.Context, call *planner.ToolCall) error {
    // Extract session from context (set by your auth middleware)
    sessionID, ok := ctx.Value(sessionKey).(string)
    if !ok {
        return fmt.Errorf("session ID not found in context")
    }
    
    // Populate injected field using generated setter
    switch call.Name {
    case specs.GetUserData:
        payload, _ := specs.UnmarshalGetUserDataPayload(call.Payload)
        payload.SetSessionID(sessionID)
        call.Payload, _ = json.Marshal(payload)
    }
    return nil
}

// Register interceptor with runtime
rt := runtime.New(runtime.WithToolInterceptor(&SessionInterceptor{}))

When to Use Inject

Use Inject for fields that:

  • Are required by the service but shouldn’t be chosen by the LLM
  • Come from runtime context (session, user, tenant, request ID)
  • Contain sensitive values (auth tokens, API keys)
  • Are infrastructure concerns (tracing IDs, correlation IDs)

Execution Models

Activity-Based Execution (Default)

Service-backed toolsets execute via Temporal activities (or equivalent in other engines):

  1. Planner returns tool calls in PlanResult (payload is json.RawMessage)
  2. Runtime schedules ExecuteToolActivity for each tool call
  3. Activity decodes payload via generated codec for validation/hints
  4. Calls the toolset registration’s Execute(ctx, planner.ToolRequest) with canonical JSON
  5. Re-encodes the result with the generated result codec

Inline Execution (Agent-as-Tool)

Agent-as-tool toolsets execute inline from the planner’s perspective while the runtime runs the provider agent as a real child run:

  1. The runtime detects Inline=true on the toolset registration
  2. It injects the engine.WorkflowContext into ctx so the toolset’s Execute function can start the provider agent as a child workflow with its own RunID
  3. It calls the toolset’s Execute(ctx, call) with canonical JSON payload and tool metadata (including parent RunID and ToolCallID)
  4. The generated agent-tool executor builds nested agent messages (system + user) from the tool payload and runs the provider agent as a child run
  5. The nested agent executes a full plan/execute/resume loop in its own run; its RunOutput and tool events are aggregated into a parent planner.ToolResult that carries the result payload, aggregated telemetry, child ChildrenCount, and a RunLink pointing at the child run
  6. Stream subscribers emit both tool_start / tool_end for the parent tool call and an agent_run_started link event so UIs and debuggers can attach to the child run’s stream on demand

Executor-First Model

Generated service toolsets expose a single, generic constructor:

New<Agent><Toolset>ToolsetRegistration(exec runtime.ToolCallExecutor)

Applications register an executor implementation for each consumed toolset. The executor decides how to run the tool (service client, MCP, nested agent, etc.) and receives explicit per-call metadata via ToolCallMeta.

Executor Example:

func Execute(ctx context.Context, meta runtime.ToolCallMeta, call planner.ToolRequest) (planner.ToolResult, error) {
    switch call.Name {
    case "orchestrator.profiles.upsert":
        args, err := profilesspecs.UnmarshalUpsertPayload(call.Payload)
        if err != nil {
            return planner.ToolResult{
                Error: planner.NewToolError("invalid payload"),
            }, nil
        }
        
        // Optional transforms if emitted by codegen
        mp, _ := profilesspecs.ToMethodPayload_Upsert(args)
        methodRes, err := client.Upsert(ctx, mp)
        if err != nil {
            return planner.ToolResult{
                Error: planner.ToolErrorFromError(err),
            }, nil
        }
        tr, _ := profilesspecs.ToToolReturn_Upsert(methodRes)
        return planner.ToolResult{Payload: tr}, nil
        
    default:
        return planner.ToolResult{
            Error: planner.NewToolError("unknown tool"),
        }, nil
    }
}

Tool Call Metadata

Tool executors receive explicit per-call metadata via ToolCallMeta rather than fishing values from context.Context. This provides direct access to run-scoped identifiers for correlation, telemetry, and parent/child relationships.

ToolCallMeta Fields

FieldDescription
RunIDDurable workflow execution identifier of the run that owns this tool call. Stable across retries; used to correlate runtime records and telemetry.
SessionIDLogically groups related runs (e.g., a chat conversation). Services typically index memory and search attributes by session.
TurnIDIdentifies the conversational turn that produced this tool call. Event streams use it to order and group events.
ToolCallIDUniquely identifies this tool invocation. Used to correlate start/update/end events and parent/child relationships.
ParentToolCallIDIdentifier of the parent tool call when this invocation is a child (e.g., a tool launched by an agent-tool). UIs and subscribers use it to reconstruct the call tree.

Executor Signature

All tool executors receive ToolCallMeta as an explicit parameter:

func Execute(ctx context.Context, meta *runtime.ToolCallMeta, call *planner.ToolRequest) (*planner.ToolResult, error) {
    // Access run context directly from meta
    log.Printf("Executing tool in run %s, session %s, turn %s", 
        meta.RunID, meta.SessionID, meta.TurnID)
    
    // Use ToolCallID for correlation
    span := tracer.StartSpan("tool.execute", trace.WithAttributes(
        attribute.String("tool.call_id", meta.ToolCallID),
        attribute.String("tool.parent_call_id", meta.ParentToolCallID),
    ))
    defer span.End()
    
    // ... tool implementation
}

Why Explicit Metadata?

The explicit metadata pattern provides several benefits:

  • Type safety: Compile-time guarantees that required identifiers are available
  • Testability: Easy to construct test metadata without mocking context
  • Clarity: No hidden dependencies on context keys or middleware ordering
  • Correlation: Direct access to parent/child relationships for nested agent-tool calls
  • Traceability: Complete causal chain from user input to tool execution to final response

Async & Durable Execution

Goa-AI uses Temporal Activities for all service-backed tool executions. This “async-first” architecture is implicit and requires no special DSL.

Implicit Async

When a planner decides to call a tool, the runtime does not block the OS thread. Instead:

  1. The runtime schedules a Temporal Activity for the tool call.
  2. The agent workflow suspends execution (saving state).
  3. The activity executes (on a local worker, remote worker, or even a different cluster).
  4. When the activity completes, the workflow wakes up, restores state, and resumes with the result.

This means every tool call is automatically parallelizable, durable, and long-running. You do not need to configure InterruptsAllowed for this standard async behavior.

Pause & Resume (Agent-Level)

InterruptsAllowed(true) is distinct: it allows the Agent itself to pause and wait for an arbitrary external signal (like a user’s clarification) that is not tied to a currently running tool activity.

FeatureImplicit AsyncPause & Resume
ScopeSingle Tool ExecutionEntire Agent Workflow
TriggerCalling any service-backed toolMissing arguments or Planner request
Policy RequiredNone (Default)InterruptsAllowed(true)
Use CaseSlow API, Batch Job, processingHuman-in-the-loop, Clarification

Ensure you verify that your use case requires agent-level pausing before enabling the policy; often, standard tool async is sufficient.

Non-Blocking Planners

From the perspective of the planner (LLM), the interaction feels synchronous: the model requests a tool, “pauses”, and then “sees” the result in the next turn.

From the perspective of the infrastructure, it is fully asynchronous and non-blocking. This allows a single small agent worker to manage thousands of concurrent long-running agent executions without running out of threads or memory.

Survival Across Restarts

Because execution is durable, you can restart your entire backend—including the agent workers—while tools are mid-execution. When the systems come back up:

  • Pending tool activities will be picked up by workers.
  • Completed tools will report results to their parent workflows.
  • Agents will resume exactly where they left off.

This capability is essential for building robust, production-grade agentic systems that operate reliably in dynamic environments.


Transforms

When a tool is bound to a Goa method via BindTo, code generation analyzes the tool Arg/Return and the method Payload/Result. If the shapes are compatible, Goa emits type-safe transform helpers:

  • ToMethodPayload_<Tool>(in <ToolArgs>) (<MethodPayload>, error)
  • ToToolReturn_<Tool>(in <MethodResult>) (<ToolReturn>, error)

Transforms are emitted under gen/<service>/agents/<agent>/specs/<toolset>/transforms.go and use Goa’s GoTransform to safely map fields. If a transform isn’t emitted, write an explicit mapper in the executor.


Tool Identity

Each toolset defines typed tool identifiers (tools.Ident) for all generated tools—including non-exported toolsets. Prefer these constants over ad-hoc strings:

import chattools "example.com/assistant/gen/orchestrator/agents/chat/agenttools/search"

// Use a generated constant instead of ad-hoc strings/casts
spec, _ := rt.ToolSpec(chattools.Search)
schemas, _ := rt.ToolSchema(chattools.Search)

For exported toolsets (agent-as-tool), Goa-AI also generates agenttools packages with:

  • Typed tool IDs
  • Alias payload/result types
  • Codecs
  • Helper builders (e.g., New<Search>Call)

Tool Validation and Retry Hints

Goa-AI combines Goa’s design-time validations with a structured tool error model to give LLM planners a powerful way to repair invalid tool calls automatically.

Core Types: ToolError and RetryHint

ToolError (alias to runtime/agent/toolerrors.ToolError):

  • Message string – human-readable summary
  • Cause *ToolError – optional nested cause (preserves chains across retries and agent-as-tool hops)
  • Constructors: planner.NewToolError(msg), planner.NewToolErrorWithCause(msg, cause), planner.ToolErrorFromError(err), planner.ToolErrorf(format, args...)

RetryHint – planner-side hint used by the runtime and policy engine:

type RetryHint struct {
    Reason             RetryReason
    Tool               tools.Ident
    RestrictToTool     bool
    MissingFields      []string
    ExampleInput       map[string]any
    PriorInput         map[string]any
    ClarifyingQuestion string
    Message            string
}

Common RetryReason values:

  • invalid_arguments – payload failed validation (schema/type)
  • missing_fields – required fields are missing
  • malformed_response – tool returned data that could not be decoded
  • timeout, rate_limited, tool_unavailable – execution/infra issues

ToolResult carries errors and hints:

type ToolResult struct {
    Name          tools.Ident
    Result        any
    Error         *ToolError
    RetryHint     *RetryHint
    Telemetry     *telemetry.ToolTelemetry
    ToolCallID    string
    ChildrenCount int
    RunLink       *run.Handle
}

Auto-Repairing Invalid Tool Calls

The recommended pattern:

  1. Design tools with strong payload schemas (Goa design)
  2. Let executors/tools surface validation failures as ToolError + RetryHint instead of panicking or hiding errors
  3. Teach your planner to inspect ToolResult.Error and ToolResult.RetryHint, repair the payload when possible, and retry the tool call if appropriate

Example Executor:

func Execute(ctx context.Context, meta runtime.ToolCallMeta, call planner.ToolRequest) (*planner.ToolResult, error) {
    args, err := spec.UnmarshalUpsertPayload(call.Payload)
    if err != nil {
        return &planner.ToolResult{
            Name: call.Name,
            Error: planner.NewToolError("invalid payload"),
            RetryHint: &planner.RetryHint{
                Reason:        planner.RetryReasonInvalidArguments,
                Tool:          call.Name,
                RestrictToTool: true,
                Message:       "Payload did not match the expected schema.",
            },
        }, nil
    }

    res, err := client.Upsert(ctx, args)
    if err != nil {
        return &planner.ToolResult{
            Name:  call.Name,
            Error: planner.ToolErrorFromError(err),
        }, nil
    }

    return &planner.ToolResult{Name: call.Name, Result: res}, nil
}

Example Planner Logic:

func (p *MyPlanner) PlanResume(ctx context.Context, in *planner.PlanResumeInput) (*planner.PlanResult, error) {
    if len(in.ToolResults) == 0 {
        return &planner.PlanResult{}, nil
    }

    last := in.ToolResults[len(in.ToolResults)-1]
    if last.Error != nil && last.RetryHint != nil {
        hint := last.RetryHint

        switch hint.Reason {
        case planner.RetryReasonMissingFields, planner.RetryReasonInvalidArguments:
            return &planner.PlanResult{
                Await: &planner.Await{
                    Clarification: &planner.AwaitClarification{
                        ID:               "fix-" + string(hint.Tool),
                        Question:         hint.ClarifyingQuestion,
                        MissingFields:    hint.MissingFields,
                        RestrictToTool:   hint.Tool,
                        ExampleInput:     hint.ExampleInput,
                        ClarifyingPrompt: hint.Message,
                    },
                },
            }, nil
        }
    }

    return &planner.PlanResult{/* FinalResponse, next ToolCalls, ... */}, nil
}

Tool Catalogs and Schemas

Goa-AI agents generate a single, authoritative catalog of tools from your Goa designs. This catalog powers:

  • Planner tool advertisement (which tools the model can call)
  • UI discovery (tool lists, categories, schemas)
  • External orchestrators (MCP, custom frontends) that need machine-readable specs

Generated Specs and tool_schemas.json

For each agent, Goa-AI emits a specs package and a JSON catalog:

Specs packages (gen/<service>/agents/<agent>/specs/...):

  • types.go – payload/result Go structs
  • codecs.go – JSON codecs (encode/decode typed payloads/results)
  • specs.go[]tools.ToolSpec entries with canonical tool ID, payload/result schemas, hints

JSON catalog (tool_schemas.json):

Location: gen/<service>/agents/<agent>/specs/tool_schemas.json

Contains one entry per tool with:

  • id – canonical tool ID ("<service>.<toolset>.<tool>")
  • service, toolset, title, description, tags
  • payload.schema and result.schema (JSON Schema)

This JSON file is ideal for feeding schemas to LLM providers, building UI forms/editors, and offline documentation tooling.

Runtime Introspection APIs

At runtime, you do not need to read tool_schemas.json from disk. The runtime exposes an introspection API:

agents   := rt.ListAgents()     // []agent.Ident
toolsets := rt.ListToolsets()   // []string

spec,   ok := rt.ToolSpec(toolID)              // single ToolSpec
schemas, ok := rt.ToolSchema(toolID)           // payload/result schemas
specs   := rt.ToolSpecsForAgent(chat.AgentID)  // []ToolSpec for one agent

Where toolID is a typed tools.Ident constant from a generated specs or agenttools package.

Typed Sidecars and Artifacts

Some tools need to return rich artifacts (full time series, topology graphs, large result sets) that are useful for UIs and audits but too heavy for model providers. Goa-AI models these as typed sidecars (also called artifacts):

Model-Facing vs Sidecar Data

The key distinction is what data flows where:

Data TypeSent to ModelStored/StreamedPurpose
Model-facing resultBounded summary the LLM reasons about
Sidecar/ArtifactFull-fidelity data for UIs, audits, downstream consumers

This separation lets you:

  • Keep model context windows bounded and focused
  • Provide rich visualizations (charts, graphs, tables) without bloating LLM prompts
  • Attach provenance and audit data that models don’t need to see
  • Stream large datasets to UIs while the model works with summaries

Declaring Artifacts in DSL

Use the Artifact(kind, schema) function inside a Tool definition:

Tool("get_time_series", "Get time series data", func() {
    Args(func() {
        Attribute("device_id", String, "Device identifier")
        Attribute("start_time", String, "Start timestamp (RFC3339)")
        Attribute("end_time", String, "End timestamp (RFC3339)")
        Required("device_id", "start_time", "end_time")
    })
    // Model-facing result: bounded summary
    Return(func() {
        Attribute("summary", String, "Summary for the model")
        Attribute("count", Int, "Number of data points")
        Attribute("min_value", Float64, "Minimum value in range")
        Attribute("max_value", Float64, "Maximum value in range")
        Required("summary", "count")
    })
    // Sidecar: full-fidelity data for UIs
    Artifact("time_series", func() {
        Attribute("data_points", ArrayOf(TimeSeriesPoint), "Full time series data")
        Attribute("metadata", MapOf(String, String), "Additional metadata")
        Required("data_points")
    })
})

The kind parameter (e.g., "time_series") identifies the artifact type so UIs can dispatch appropriate renderers.

Generated Specs and Helpers

In the specs packages, each tools.ToolSpec entry includes:

  • Payload tools.TypeSpec – tool input schema
  • Result tools.TypeSpec – model-facing output schema
  • Sidecar *tools.TypeSpec (optional) – artifact schema

Goa-AI generates typed helpers for working with sidecars:

// Get artifact from a tool result
func GetGetTimeSeriesSidecar(res *planner.ToolResult) (*GetTimeSeriesSidecar, error)

// Attach artifact to a tool result
func SetGetTimeSeriesSidecar(res *planner.ToolResult, sc *GetTimeSeriesSidecar) error

Runtime Usage Patterns

In tool executors, attach artifacts to results:

func (e *Executor) Execute(ctx context.Context, meta *runtime.ToolCallMeta, call *planner.ToolRequest) (*planner.ToolResult, error) {
    args, _ := specs.UnmarshalGetTimeSeriesPayload(call.Payload)
    
    // Fetch full data
    fullData, err := e.dataService.GetTimeSeries(ctx, args.DeviceID, args.StartTime, args.EndTime)
    if err != nil {
        return &planner.ToolResult{Error: planner.ToolErrorFromError(err)}, nil
    }
    
    // Build bounded model-facing result
    result := &specs.GetTimeSeriesResult{
        Summary:  fmt.Sprintf("Retrieved %d data points from %s to %s", len(fullData.Points), args.StartTime, args.EndTime),
        Count:    len(fullData.Points),
        MinValue: fullData.Min,
        MaxValue: fullData.Max,
    }
    
    // Build full-fidelity artifact for UIs
    artifact := &specs.GetTimeSeriesSidecar{
        DataPoints: fullData.Points,
        Metadata:   fullData.Metadata,
    }
    
    // Attach artifact to result
    toolResult := &planner.ToolResult{
        Name:   call.Name,
        Result: result,
    }
    specs.SetGetTimeSeriesSidecar(toolResult, artifact)
    
    return toolResult, nil
}

In stream subscribers or UI handlers, access artifacts:

func handleToolEnd(event *stream.ToolEndEvent) {
    // Artifacts are available on the event
    for _, artifact := range event.Artifacts {
        switch artifact.Kind {
        case "time_series":
            // Render time series chart
            renderTimeSeriesChart(artifact.Data)
        case "topology":
            // Render network graph
            renderTopologyGraph(artifact.Data)
        }
    }
}

Artifact Structure

The planner.Artifact type carries:

type Artifact struct {
    Kind       string       // Logical type (e.g., "time_series", "chart_data")
    Data       any          // JSON-serializable payload
    SourceTool tools.Ident  // Tool that produced this artifact
    RunLink    *run.Handle  // Link to nested agent run (for agent-as-tool)
}

When to Use Artifacts

Use artifacts when:

  • Tool results include data too large for model context (time series, logs, large tables)
  • UIs need structured data for visualization (charts, graphs, maps)
  • You want to separate what the model reasons about from what users see
  • Downstream systems need full-fidelity data while the model works with summaries

Avoid artifacts when:

  • The full result fits comfortably in model context
  • There’s no UI or downstream consumer that needs the full data
  • The bounded result already contains everything needed

Best Practices

  • Put validations in the design, not in planners – Use Goa’s attribute DSL (Required, MinLength, Enum, etc.)
  • Return ToolError + RetryHint from executors – Prefer structured errors over panics or plain error returns
  • Keep hints concise but actionable – Focus on which fields are missing/invalid, a short clarifying question, and a small ExampleInput map
  • Teach planners to read hints – Make RetryHint handling a first-class part of your planner
  • Avoid re-validating inside services – Goa-AI assumes validation happens at the tool boundary

Next Steps